Results for SBMnet 2016
- Overall
- Basic
- Intermittent Motion
- Clutter
- Jitter
- Illumination Changes
- Background Motion
- Very Long
- Very Short
Results, all categories combined.
Click on method name for more details.
Method | Average ranking | Average ranking across categories | Average AGE | Average pEPs | Average pCEPS | Average MSSSIM | Average PSNR | CQM |
---|---|---|---|---|---|---|---|---|
Temporal median filter [2] | 15.67 | 11.13 | 8.2761 | 0.0984 | 0.0546 | 0.9130 | 27.5364 | 28.4434 |
Photomontage [3] | 10.17 | 14.13 | 7.1950 | 0.0686 | 0.0257 | 0.9189 | 28.0113 | 28.8719 |
RSL2011 [4] | 20.83 | 21.63 | 9.0443 | 0.1008 | 0.0497 | 0.8891 | 25.8051 | 26.7986 |
FC-FlowNet [5] | 18.83 | 16.50 | 9.1131 | 0.1128 | 0.0599 | 0.9162 | 26.9559 | 27.8767 |
LaBGen [6] | 7.00 | 10.38 | 6.7090 | 0.0631 | 0.0265 | 0.9266 | 28.6396 | 29.4668 |
LaBGen-P [7] | 8.67 | 11.00 | 7.0738 | 0.0706 | 0.0319 | 0.9278 | 28.4660 | 29.3196 |
RMR [8] | 22.67 | 20.88 | 9.5363 | 0.1176 | 0.0582 | 0.8790 | 26.5217 | 27.4549 |
SC-SOBS-C4 [9] | 11.50 | 13.13 | 7.5183 | 0.0711 | 0.0242 | 0.9160 | 27.6533 | 28.5601 |
MAGRPCA [10] | 12.67 | 12.63 | 8.3132 | 0.0994 | 0.0567 | 0.9401 | 28.4556 | 29.3152 |
TMFG [11] | 18.67 | 12.50 | 9.4020 | 0.1051 | 0.0566 | 0.9043 | 27.1347 | 28.0530 |
Bidirectional Analysis and Consensus Voting [12] | 16.83 | 16.00 | 8.5816 | 0.0724 | 0.0257 | 0.9078 | 26.1018 | 27.1000 |
Bidirectional Analysis [13] | 15.17 | 14.13 | 8.3449 | 0.0756 | 0.0181 | 0.9085 | 26.1722 | 27.1637 |
BE-AAPSA [14] | 15.50 | 15.00 | 7.9086 | 0.0873 | 0.0447 | 0.9127 | 27.0714 | 27.9811 |
MSCL [15] | 1.67 | 5.75 | 5.9547 | 0.0524 | 0.0171 | 0.9410 | 30.8952 | 31.7049 |
DECOLOR [16] | 26.17 | 23.25 | 11.6340 | 0.1667 | 0.1098 | 0.9011 | 25.5717 | 26.4989 |
3-Term Decomposition [17] | 26.00 | 23.38 | 11.5438 | 0.1614 | 0.0993 | 0.8863 | 25.3154 | 26.2844 |
BRTF [18] | 28.17 | 27.50 | 11.9229 | 0.1614 | 0.0991 | 0.8799 | 24.9256 | 25.9302 |
RFSA [19] | 30.83 | 28.00 | 13.2359 | 0.1717 | 0.1092 | 0.8723 | 24.6671 | 25.6682 |
RMAMR [20] | 19.67 | 18.75 | 9.6995 | 0.1243 | 0.0770 | 0.9258 | 26.5380 | 27.4680 |
SSGoDec [21] | 26.50 | 24.13 | 11.5934 | 0.1584 | 0.0974 | 0.8854 | 24.9954 | 25.9955 |
GRASTA [22] | 28.67 | 24.88 | 11.9362 | 0.1696 | 0.1085 | 0.8833 | 24.9914 | 25.9995 |
GOSUS [23] | 28.00 | 24.63 | 12.1183 | 0.1621 | 0.1002 | 0.8817 | 25.0354 | 26.0370 |
BEWiS [24] | 6.17 | 8.25 | 6.7094 | 0.0592 | 0.0266 | 0.9282 | 28.7728 | 29.6342 |
LaBGen-OF [25] | 3.00 | 5.88 | 6.1897 | 0.0566 | 0.0232 | 0.9412 | 29.8957 | 30.7006 |
NExBI [26] | 9.00 | 14.38 | 6.7778 | 0.0671 | 0.0227 | 0.9196 | 27.9944 | 28.8810 |
ABM [27] | 17.83 | 16.63 | 8.4182 | 0.0865 | 0.0387 | 0.9012 | 26.3536 | 27.3215 |
LaBGen-P-Semantic (CV+U) [28] | 9.67 | 9.63 | 7.3890 | 0.0761 | 0.0357 | 0.9267 | 28.5050 | 29.3829 |
LaBGen-P-Semantic (MP+U) [29] | 12.17 | 10.75 | 7.9731 | 0.0820 | 0.0394 | 0.9212 | 28.3234 | 29.1992 |
SPMD [30] | 1.83 | 6.38 | 6.0985 | 0.0487 | 0.0154 | 0.9412 | 29.8439 | 30.6499 |
FSBE [31] | 4.33 | 10.50 | 6.6204 | 0.0605 | 0.0217 | 0.9373 | 29.3378 | 30.1777 |
AAPSA [1] | 22.17 | 21.63 | 9.2044 | 0.1057 | 0.0523 | 0.9000 | 25.3947 | 26.3021 |
Results, for the basic category.
Click on method name for more details.
Method | Average ranking | Average AGE | Average pEPs | Average pCEPS | Average MSSSIM | Average PSNR | CQM |
---|---|---|---|---|---|---|---|
Temporal median filter [2] | 5.33 | 3.8269 | 0.0139 | 0.0034 | 0.9804 | 33.7085 | 34.3342 |
Photomontage [3] | 13.17 | 4.4856 | 0.0226 | 0.0039 | 0.9719 | 32.3208 | 32.9621 |
RSL2011 [4] | 16.67 | 4.5546 | 0.0269 | 0.0081 | 0.9660 | 31.6767 | 32.4654 |
FC-FlowNet [5] | 18.50 | 5.5856 | 0.0327 | 0.0142 | 0.9636 | 30.4121 | 31.2285 |
LaBGen [6] | 9.17 | 3.9012 | 0.0154 | 0.0045 | 0.9742 | 32.9009 | 33.5733 |
LaBGen-P [7] | 8.67 | 3.9712 | 0.0156 | 0.0041 | 0.9749 | 33.2445 | 33.8797 |
RMR [8] | 23.17 | 5.8867 | 0.0480 | 0.0167 | 0.9400 | 29.6069 | 30.4044 |
SC-SOBS-C4 [9] | 12.83 | 4.3598 | 0.0200 | 0.0033 | 0.9728 | 32.1766 | 32.8665 |
MAGRPCA [10] | 21.33 | 8.9576 | 0.1124 | 0.0882 | 0.9669 | 29.6430 | 30.4461 |
TMFG [11] | 4.00 | 3.8063 | 0.0131 | 0.0031 | 0.9803 | 33.7483 | 34.3541 |
Bidirectional Analysis and Consensus Voting [12] | 11.83 | 4.1421 | 0.0159 | 0.0019 | 0.9723 | 31.9277 | 32.6950 |
Bidirectional Analysis [13] | 10.00 | 4.1075 | 0.0161 | 0.0017 | 0.9736 | 32.3092 | 33.0339 |
BE-AAPSA [14] | 20.83 | 5.6842 | 0.0472 | 0.0273 | 0.9626 | 30.1101 | 30.9398 |
MSCL [15] | 1.33 | 3.4019 | 0.0112 | 0.0019 | 0.9807 | 35.1206 | 35.6507 |
DECOLOR [16] | 27.50 | 9.7332 | 0.1203 | 0.0920 | 0.9523 | 27.9299 | 28.8626 |
3-Term Decomposition [17] | 26.83 | 9.2635 | 0.1200 | 0.0927 | 0.9483 | 28.2310 | 29.0882 |
BRTF [18] | 24.33 | 9.5385 | 0.1140 | 0.0876 | 0.9621 | 28.4655 | 29.3246 |
RFSA [19] | 25.67 | 9.6654 | 0.1183 | 0.0915 | 0.9609 | 28.3326 | 29.1893 |
RMAMR [20] | 21.33 | 8.9576 | 0.1124 | 0.0882 | 0.9669 | 29.6430 | 30.4461 |
SSGoDec [21] | 29.67 | 12.6639 | 0.1706 | 0.1343 | 0.9249 | 26.6982 | 27.5852 |
GRASTA [22] | 29.17 | 12.3337 | 0.1722 | 0.1372 | 0.9414 | 26.8165 | 27.7176 |
GOSUS [23] | 31.00 | 15.8439 | 0.1753 | 0.1425 | 0.9075 | 26.4462 | 27.3629 |
BEWiS [24] | 12.00 | 4.0673 | 0.0162 | 0.0058 | 0.9770 | 32.2327 | 33.0035 |
LaBGen-OF [25] | 4.17 | 3.8421 | 0.0118 | 0.0033 | 0.9796 | 33.7714 | 34.3918 |
NExBI [26] | 17.17 | 4.7466 | 0.0234 | 0.0058 | 0.9630 | 31.4990 | 32.2565 |
ABM [27] | 19.67 | 4.9624 | 0.0349 | 0.0117 | 0.9574 | 30.3146 | 31.0928 |
LaBGen-P-Semantic (CV+U) [28] | 7.67 | 3.8878 | 0.0153 | 0.0049 | 0.9788 | 32.9252 | 33.5776 |
LaBGen-P-Semantic (MP+U) [29] | 10.00 | 3.9190 | 0.0156 | 0.0051 | 0.9768 | 32.8717 | 33.5317 |
SPMD [30] | 2.50 | 3.8141 | 0.0119 | 0.0021 | 0.9812 | 33.9777 | 34.5761 |
FSBE [31] | 7.33 | 3.8960 | 0.0131 | 0.0028 | 0.9784 | 32.7916 | 33.4660 |
AAPSA [1] | 22.17 | 5.6500 | 0.0449 | 0.0222 | 0.9575 | 29.4528 | 30.1252 |
Results, for the intermittent motion category.
Click on method name for more details.
Method | Average ranking | Average AGE | Average pEPs | Average pCEPS | Average MSSSIM | Average PSNR | CQM |
---|---|---|---|---|---|---|---|
Temporal median filter [2] | 24.83 | 6.8003 | 0.0615 | 0.0421 | 0.9150 | 24.7016 | 25.7573 |
Photomontage [3] | 24.83 | 7.1460 | 0.0639 | 0.0427 | 0.9138 | 24.8941 | 25.8682 |
RSL2011 [4] | 14.83 | 5.1116 | 0.0399 | 0.0244 | 0.9532 | 28.0795 | 29.0599 |
FC-FlowNet [5] | 19.00 | 6.7811 | 0.0599 | 0.0347 | 0.9312 | 27.0272 | 27.9086 |
LaBGen [6] | 10.67 | 4.4333 | 0.0293 | 0.0164 | 0.9597 | 29.4757 | 30.3373 |
LaBGen-P [7] | 5.33 | 4.1278 | 0.0225 | 0.0115 | 0.9712 | 31.9974 | 32.7260 |
RMR [8] | 5.50 | 4.3606 | 0.0213 | 0.0091 | 0.9730 | 31.1372 | 31.9285 |
SC-SOBS-C4 [9] | 19.17 | 6.2583 | 0.0487 | 0.0238 | 0.9255 | 25.9249 | 26.9569 |
MAGRPCA [10] | 16.17 | 8.3106 | 0.1391 | 0.1018 | 0.9710 | 29.7923 | 30.6718 |
TMFG [11] | 23.67 | 6.7602 | 0.0609 | 0.0409 | 0.9167 | 24.8249 | 25.8626 |
Bidirectional Analysis and Consensus Voting [12] | 6.00 | 4.5966 | 0.0198 | 0.0079 | 0.9657 | 30.2170 | 31.1074 |
Bidirectional Analysis [13] | 11.00 | 5.0569 | 0.0245 | 0.0082 | 0.9533 | 28.6439 | 29.5925 |
BE-AAPSA [14] | 18.00 | 6.6997 | 0.0547 | 0.0369 | 0.9345 | 26.5072 | 27.5251 |
MSCL [15] | 5.17 | 3.9743 | 0.0313 | 0.0215 | 0.9831 | 32.6916 | 33.4541 |
DECOLOR [16] | 25.67 | 12.0047 | 0.2000 | 0.1598 | 0.9319 | 26.1289 | 27.1080 |
3-Term Decomposition [17] | 22.33 | 9.4001 | 0.1508 | 0.1100 | 0.9338 | 25.9513 | 26.9027 |
BRTF [18] | 27.33 | 10.4812 | 0.1572 | 0.1210 | 0.9315 | 25.2367 | 26.2792 |
RFSA [19] | 28.00 | 10.4876 | 0.1572 | 0.1208 | 0.9313 | 25.2233 | 26.2697 |
RMAMR [20] | 26.00 | 10.3766 | 0.1566 | 0.1204 | 0.9335 | 25.3660 | 26.4087 |
SSGoDec [21] | 24.67 | 10.2804 | 0.1556 | 0.1196 | 0.9358 | 25.5155 | 26.5583 |
GRASTA [22] | 23.67 | 10.2392 | 0.1553 | 0.1193 | 0.9370 | 25.6080 | 26.6518 |
GOSUS [23] | 22.67 | 10.2085 | 0.1548 | 0.1189 | 0.9378 | 25.6716 | 26.7113 |
BEWiS [24] | 11.00 | 4.7798 | 0.0277 | 0.0173 | 0.9585 | 29.7747 | 30.6778 |
LaBGen-OF [25] | 7.67 | 4.6433 | 0.0221 | 0.0120 | 0.9676 | 30.5799 | 31.3920 |
NExBI [26] | 9.17 | 4.6374 | 0.0248 | 0.0123 | 0.9639 | 30.0986 | 30.8849 |
ABM [27] | 15.00 | 5.6742 | 0.0416 | 0.0237 | 0.9550 | 27.2945 | 28.3130 |
LaBGen-P-Semantic (CV+U) [28] | 1.33 | 3.8079 | 0.0194 | 0.0082 | 0.9810 | 32.8806 | 33.5830 |
LaBGen-P-Semantic (MP+U) [29] | 3.50 | 3.9757 | 0.0206 | 0.0094 | 0.9782 | 32.1411 | 32.8462 |
SPMD [30] | 4.50 | 4.1840 | 0.0206 | 0.0088 | 0.9745 | 31.9703 | 32.7043 |
FSBE [31] | 12.83 | 5.3438 | 0.0399 | 0.0220 | 0.9610 | 29.1968 | 30.1392 |
AAPSA [1] | 26.50 | 8.2573 | 0.0768 | 0.0522 | 0.9009 | 24.2814 | 25.2087 |
Results, for the clutter category.
Click on method name for more details.
Method | Average ranking | Average AGE | Average pEPs | Average pCEPS | Average MSSSIM | Average PSNR | CQM |
---|---|---|---|---|---|---|---|
Temporal median filter [2] | 19.00 | 12.5316 | 0.1590 | 0.1108 | 0.8185 | 26.1441 | 27.1507 |
Photomontage [3] | 9.50 | 6.8195 | 0.0543 | 0.0294 | 0.8892 | 28.5554 | 29.4882 |
RSL2011 [4] | 12.33 | 7.3013 | 0.0701 | 0.0375 | 0.9087 | 27.9304 | 28.9763 |
FC-FlowNet [5] | 20.17 | 12.5556 | 0.1719 | 0.1185 | 0.8762 | 25.3201 | 26.4707 |
LaBGen [6] | 14.33 | 8.0579 | 0.1035 | 0.0740 | 0.8834 | 26.7690 | 27.7986 |
LaBGen-P [7] | 12.33 | 7.8947 | 0.0986 | 0.0678 | 0.8967 | 28.1140 | 29.1305 |
RMR [8] | 23.00 | 15.3119 | 0.1819 | 0.1202 | 0.7306 | 23.3608 | 24.5341 |
SC-SOBS-C4 [9] | 11.00 | 7.0590 | 0.0644 | 0.0304 | 0.8939 | 28.0077 | 29.0737 |
MAGRPCA [10] | 11.00 | 8.1589 | 0.0647 | 0.0294 | 0.9446 | 26.6872 | 27.5988 |
TMFG [11] | 19.00 | 11.7469 | 0.1397 | 0.0952 | 0.8144 | 25.9395 | 27.0378 |
Bidirectional Analysis and Consensus Voting [12] | 11.83 | 7.2284 | 0.0546 | 0.0243 | 0.9206 | 25.9467 | 27.0419 |
Bidirectional Analysis [13] | 10.00 | 6.6565 | 0.0497 | 0.0177 | 0.9243 | 26.4376 | 27.5267 |
BE-AAPSA [14] | 21.00 | 12.3049 | 0.1775 | 0.1205 | 0.8526 | 23.7151 | 24.8666 |
MSCL [15] | 2.83 | 5.2695 | 0.0275 | 0.0094 | 0.9629 | 31.3743 | 32.2837 |
DECOLOR [16] | 24.83 | 16.3016 | 0.2273 | 0.1462 | 0.7792 | 23.4934 | 24.4716 |
3-Term Decomposition [17] | 29.00 | 17.8838 | 0.2499 | 0.1714 | 0.6969 | 21.7537 | 22.9806 |
BRTF [18] | 29.50 | 18.0231 | 0.2514 | 0.1645 | 0.6805 | 21.4143 | 22.6510 |
RFSA [19] | 30.50 | 19.1931 | 0.2532 | 0.1696 | 0.6638 | 21.1248 | 22.3588 |
RMAMR [20] | 11.00 | 8.1589 | 0.0647 | 0.0294 | 0.9446 | 26.6872 | 27.5988 |
SSGoDec [21] | 26.17 | 15.9385 | 0.2083 | 0.1340 | 0.7037 | 22.1258 | 23.3488 |
GRASTA [22] | 26.50 | 16.6606 | 0.2216 | 0.1411 | 0.7045 | 22.2120 | 23.4316 |
GOSUS [23] | 26.17 | 16.4434 | 0.2153 | 0.1394 | 0.7072 | 22.2092 | 23.4261 |
BEWiS [24] | 18.00 | 10.6714 | 0.1227 | 0.0845 | 0.8610 | 25.4804 | 26.4783 |
LaBGen-OF [25] | 1.50 | 4.1821 | 0.0246 | 0.0117 | 0.9640 | 32.6339 | 33.4654 |
NExBI [26] | 5.17 | 5.3091 | 0.0414 | 0.0141 | 0.9379 | 30.0056 | 30.9847 |
ABM [27] | 21.17 | 11.2043 | 0.1402 | 0.0829 | 0.8104 | 22.8067 | 23.9437 |
LaBGen-P-Semantic (CV+U) [28] | 8.17 | 6.0107 | 0.0578 | 0.0333 | 0.9294 | 29.8567 | 30.7288 |
LaBGen-P-Semantic (MP+U) [29] | 8.50 | 6.1222 | 0.0573 | 0.0325 | 0.9290 | 29.7306 | 30.6027 |
SPMD [30] | 3.00 | 4.5998 | 0.0250 | 0.0114 | 0.9572 | 30.9212 | 31.8627 |
FSBE [31] | 2.83 | 4.7660 | 0.0328 | 0.0152 | 0.9641 | 32.1217 | 32.9884 |
AAPSA [1] | 25.67 | 15.7186 | 0.2577 | 0.1863 | 0.8240 | 22.8853 | 23.9875 |
Results, for the jitter category.
Click on method name for more details.
Method | Average ranking | Average AGE | Average pEPs | Average pCEPS | Average MSSSIM | Average PSNR | CQM |
---|---|---|---|---|---|---|---|
Temporal median filter [2] | 2.83 | 9.0892 | 0.1063 | 0.0404 | 0.8556 | 25.5526 | 26.6236 |
Photomontage [3] | 16.00 | 10.1272 | 0.1210 | 0.0441 | 0.8390 | 24.3478 | 25.4186 |
RSL2011 [4] | 22.50 | 10.5876 | 0.1237 | 0.0493 | 0.8059 | 22.6947 | 23.8316 |
FC-FlowNet [5] | 12.83 | 10.2805 | 0.1138 | 0.0446 | 0.8489 | 25.0240 | 26.0705 |
LaBGen [6] | 8.83 | 9.7096 | 0.1108 | 0.0420 | 0.8487 | 25.3282 | 26.3608 |
LaBGen-P [7] | 7.00 | 9.6487 | 0.1100 | 0.0410 | 0.8504 | 25.2447 | 26.2834 |
RMR [8] | 28.33 | 11.5991 | 0.1468 | 0.0624 | 0.7806 | 22.1418 | 23.2998 |
SC-SOBS-C4 [9] | 13.00 | 10.0232 | 0.1186 | 0.0420 | 0.8403 | 24.5562 | 25.6570 |
MAGRPCA [10] | 12.67 | 10.9525 | 0.1131 | 0.0419 | 0.8503 | 24.4999 | 25.6199 |
TMFG [11] | 4.17 | 9.2013 | 0.1069 | 0.0408 | 0.8543 | 25.4488 | 26.5210 |
Bidirectional Analysis and Consensus Voting [12] | 13.33 | 10.0040 | 0.1098 | 0.0365 | 0.8369 | 23.5048 | 24.6902 |
Bidirectional Analysis [13] | 12.50 | 10.1835 | 0.1090 | 0.0341 | 0.8385 | 23.6701 | 24.8364 |
BE-AAPSA [14] | 17.83 | 10.1994 | 0.1246 | 0.0584 | 0.8373 | 24.5489 | 25.6301 |
MSCL [15] | 8.00 | 9.7403 | 0.1049 | 0.0424 | 0.8475 | 25.3035 | 26.3824 |
DECOLOR [16] | 26.67 | 14.4931 | 0.2543 | 0.1459 | 0.8494 | 22.4057 | 23.5875 |
3-Term Decomposition [17] | 24.50 | 12.5810 | 0.1405 | 0.0532 | 0.8055 | 22.9781 | 24.1084 |
BRTF [18] | 27.33 | 13.3652 | 0.1558 | 0.0558 | 0.8001 | 22.5448 | 23.7288 |
RFSA [19] | 26.83 | 13.7167 | 0.1640 | 0.0689 | 0.7825 | 22.9790 | 24.1223 |
RMAMR [20] | 12.67 | 10.9525 | 0.1131 | 0.0419 | 0.8503 | 24.4999 | 25.6199 |
SSGoDec [21] | 22.67 | 12.4230 | 0.1428 | 0.0448 | 0.8379 | 22.7464 | 23.9061 |
GRASTA [22] | 29.83 | 14.9121 | 0.2185 | 0.1241 | 0.8031 | 22.3155 | 23.4959 |
GOSUS [23] | 26.50 | 13.2675 | 0.1593 | 0.0535 | 0.8210 | 22.4765 | 23.6413 |
BEWiS [24] | 5.83 | 9.4156 | 0.1048 | 0.0402 | 0.8524 | 24.7408 | 25.8579 |
LaBGen-OF [25] | 2.17 | 9.2410 | 0.1064 | 0.0380 | 0.8579 | 25.9053 | 26.9264 |
NExBI [26] | 21.67 | 11.1301 | 0.1332 | 0.0513 | 0.8135 | 23.2880 | 24.4286 |
ABM [27] | 24.00 | 11.6703 | 0.1390 | 0.0492 | 0.8127 | 22.6091 | 23.7288 |
LaBGen-P-Semantic (CV+U) [28] | 9.33 | 9.5900 | 0.1106 | 0.0427 | 0.8491 | 25.0303 | 26.0662 |
LaBGen-P-Semantic (MP+U) [29] | 11.17 | 9.4907 | 0.1128 | 0.0435 | 0.8458 | 24.7809 | 25.8366 |
SPMD [30] | 11.00 | 9.8095 | 0.1122 | 0.0397 | 0.8501 | 24.3467 | 25.4432 |
FSBE [31] | 19.33 | 10.3878 | 0.1256 | 0.0530 | 0.8374 | 23.9364 | 25.0050 |
AAPSA [1] | 13.67 | 10.2185 | 0.1202 | 0.0382 | 0.8545 | 23.2861 | 24.2624 |
Results, for the illumination changes category.
Click on method name for more details.
Method | Average ranking | Average AGE | Average pEPs | Average pCEPS | Average MSSSIM | Average PSNR | CQM |
---|---|---|---|---|---|---|---|
Temporal median filter [2] | 19.00 | 12.2205 | 0.2322 | 0.1783 | 0.9400 | 24.3156 | 25.3760 |
Photomontage [3] | 4.67 | 5.2668 | 0.0329 | 0.0155 | 0.9743 | 30.2102 | 31.0393 |
RSL2011 [4] | 16.83 | 9.1963 | 0.0996 | 0.0669 | 0.9349 | 23.9579 | 25.1714 |
FC-FlowNet [5] | 19.50 | 13.3662 | 0.2584 | 0.1906 | 0.9452 | 24.2047 | 25.2306 |
LaBGen [6] | 6.33 | 6.1922 | 0.0440 | 0.0206 | 0.9725 | 29.7108 | 30.5510 |
LaBGen-P [7] | 11.17 | 7.4945 | 0.0611 | 0.0376 | 0.9630 | 25.2155 | 26.3522 |
RMR [8] | 10.17 | 7.1869 | 0.0656 | 0.0403 | 0.9485 | 28.7961 | 29.8049 |
SC-SOBS-C4 [9] | 15.50 | 10.3591 | 0.1005 | 0.0574 | 0.9075 | 26.2190 | 27.0837 |
MAGRPCA [10] | 9.50 | 7.7987 | 0.1158 | 0.0804 | 0.9760 | 31.9554 | 32.7325 |
TMFG [11] | 29.33 | 22.0886 | 0.3025 | 0.2119 | 0.8612 | 20.8670 | 22.0259 |
Bidirectional Analysis and Consensus Voting [12] | 22.83 | 16.1236 | 0.1192 | 0.0668 | 0.8653 | 21.4330 | 22.5940 |
Bidirectional Analysis [13] | 25.00 | 16.8302 | 0.1833 | 0.0417 | 0.8252 | 19.3961 | 20.6819 |
BE-AAPSA [14] | 11.33 | 7.0447 | 0.0694 | 0.0451 | 0.9613 | 27.4897 | 28.2828 |
MSCL [15] | 2.00 | 4.4319 | 0.0341 | 0.0134 | 0.9856 | 34.6735 | 35.3442 |
DECOLOR [16] | 20.50 | 15.4263 | 0.2505 | 0.2029 | 0.9423 | 24.9675 | 25.8595 |
3-Term Decomposition [17] | 23.83 | 17.1636 | 0.2765 | 0.1965 | 0.9469 | 21.9685 | 23.0674 |
BRTF [18] | 25.83 | 16.1184 | 0.2790 | 0.2146 | 0.9323 | 23.0102 | 24.1362 |
RFSA [19] | 29.00 | 24.6445 | 0.3327 | 0.2648 | 0.9114 | 20.9701 | 22.1231 |
RMAMR [20] | 24.00 | 15.1097 | 0.2757 | 0.2113 | 0.9407 | 23.4022 | 24.5004 |
SSGoDec [21] | 21.17 | 14.1049 | 0.2636 | 0.1983 | 0.9457 | 23.7863 | 24.8676 |
GRASTA [22] | 22.17 | 14.1049 | 0.2636 | 0.1983 | 0.9457 | 23.7840 | 24.8670 |
GOSUS [23] | 20.50 | 14.1035 | 0.2636 | 0.1983 | 0.9458 | 23.7883 | 24.8695 |
BEWiS [24] | 5.67 | 5.9048 | 0.0312 | 0.0223 | 0.9745 | 29.5427 | 30.3805 |
LaBGen-OF [25] | 12.33 | 8.2200 | 0.1130 | 0.0746 | 0.9654 | 27.8422 | 28.7690 |
NExBI [26] | 7.50 | 4.8310 | 0.0536 | 0.0321 | 0.9621 | 29.2036 | 30.1214 |
ABM [27] | 17.33 | 11.2415 | 0.1142 | 0.0866 | 0.9194 | 24.8643 | 25.8980 |
LaBGen-P-Semantic (CV+U) [28] | 23.33 | 14.1797 | 0.1633 | 0.1215 | 0.8853 | 21.2098 | 22.3803 |
LaBGen-P-Semantic (MP+U) [29] | 26.50 | 18.5133 | 0.2076 | 0.1565 | 0.8542 | 20.4792 | 21.6238 |
SPMD [30] | 2.50 | 4.4750 | 0.0222 | 0.0090 | 0.9835 | 32.1311 | 32.9629 |
FSBE [31] | 2.17 | 5.5089 | 0.0150 | 0.0040 | 0.9854 | 32.1672 | 32.9817 |
AAPSA [1] | 8.33 | 6.7259 | 0.0562 | 0.0250 | 0.9728 | 28.5080 | 29.2912 |
Results, for the background motion category.
Click on method name for more details.
Method | Average ranking | Average AGE | Average pEPs | Average pCEPS | Average MSSSIM | Average PSNR | CQM |
---|---|---|---|---|---|---|---|
Temporal median filter [2] | 8.17 | 9.6479 | 0.1262 | 0.0300 | 0.8566 | 25.9277 | 26.7931 |
Photomontage [3] | 27.00 | 12.0930 | 0.1589 | 0.0410 | 0.8244 | 23.5420 | 24.5253 |
RSL2011 [4] | 28.50 | 13.2090 | 0.1604 | 0.0531 | 0.8040 | 23.8834 | 24.7017 |
FC-FlowNet [5] | 11.00 | 10.0539 | 0.1440 | 0.0362 | 0.8612 | 26.0302 | 26.9014 |
LaBGen [6] | 14.33 | 10.4996 | 0.1356 | 0.0334 | 0.8465 | 25.4982 | 26.1616 |
LaBGen-P [7] | 14.17 | 10.5858 | 0.1350 | 0.0336 | 0.8442 | 25.7879 | 26.5748 |
RMR [8] | 27.83 | 12.2932 | 0.1682 | 0.0464 | 0.8151 | 23.9116 | 24.7040 |
SC-SOBS-C4 [9] | 16.33 | 10.7280 | 0.1481 | 0.0302 | 0.8486 | 24.5806 | 25.5603 |
MAGRPCA [10] | 9.00 | 10.0742 | 0.1318 | 0.0299 | 0.8748 | 25.8756 | 26.7832 |
TMFG [11] | 3.50 | 9.0773 | 0.1185 | 0.0228 | 0.8706 | 26.4052 | 27.2770 |
Bidirectional Analysis and Consensus Voting [12] | 11.67 | 10.5260 | 0.1316 | 0.0269 | 0.8553 | 25.2106 | 26.1305 |
Bidirectional Analysis [13] | 15.17 | 10.7772 | 0.1350 | 0.0273 | 0.8574 | 24.0802 | 25.0203 |
BE-AAPSA [14] | 5.17 | 9.3755 | 0.1266 | 0.0259 | 0.8766 | 26.0041 | 26.9062 |
MSCL [15] | 19.33 | 11.2194 | 0.1540 | 0.0332 | 0.8448 | 24.4813 | 25.6982 |
DECOLOR [16] | 17.67 | 10.5910 | 0.1403 | 0.0351 | 0.8535 | 24.2455 | 25.1072 |
3-Term Decomposition [17] | 16.17 | 10.6576 | 0.1409 | 0.0336 | 0.8564 | 24.5778 | 25.4719 |
BRTF [18] | 26.00 | 11.7599 | 0.1532 | 0.0423 | 0.8335 | 23.5254 | 24.5149 |
RFSA [19] | 24.50 | 11.7422 | 0.1527 | 0.0421 | 0.8338 | 23.5308 | 24.5188 |
RMAMR [20] | 27.83 | 11.7876 | 0.1539 | 0.0428 | 0.8331 | 23.5139 | 24.5008 |
SSGoDec [21] | 24.83 | 11.7587 | 0.1532 | 0.0430 | 0.8329 | 23.5442 | 24.5264 |
GRASTA [22] | 26.50 | 11.7686 | 0.1536 | 0.0431 | 0.8326 | 23.5367 | 24.5196 |
GOSUS [23] | 28.00 | 11.7763 | 0.1536 | 0.0432 | 0.8322 | 23.5296 | 24.5127 |
BEWiS [24] | 5.83 | 9.6776 | 0.1258 | 0.0286 | 0.8644 | 26.0753 | 26.9685 |
LaBGen-OF [25] | 10.83 | 10.0698 | 0.1312 | 0.0323 | 0.8550 | 25.8626 | 26.6974 |
NExBI [26] | 22.17 | 11.5851 | 0.1577 | 0.0379 | 0.8347 | 24.3680 | 25.2364 |
ABM [27] | 6.67 | 9.9952 | 0.1316 | 0.0292 | 0.8662 | 26.3616 | 27.5133 |
LaBGen-P-Semantic (CV+U) [28] | 2.00 | 8.8557 | 0.1165 | 0.0202 | 0.8797 | 26.9364 | 28.0108 |
LaBGen-P-Semantic (MP+U) [29] | 1.00 | 8.7583 | 0.1152 | 0.0189 | 0.8805 | 27.0334 | 28.1119 |
SPMD [30] | 9.00 | 9.9115 | 0.1252 | 0.0289 | 0.8587 | 25.5415 | 26.2744 |
FSBE [31] | 15.83 | 10.5862 | 0.1447 | 0.0370 | 0.8460 | 25.6187 | 26.4072 |
AAPSA [1] | 20.00 | 11.1404 | 0.1488 | 0.0381 | 0.8422 | 24.4876 | 25.4679 |
Results, for the very long category.
Click on method name for more details.
Method | Average ranking | Average AGE | Average pEPs | Average pCEPS | Average MSSSIM | Average PSNR | CQM |
---|---|---|---|---|---|---|---|
Temporal median filter [2] | 12.50 | 6.9588 | 0.0557 | 0.0199 | 0.9843 | 29.3160 | 30.2107 |
Photomontage [3] | 14.33 | 6.6446 | 0.0629 | 0.0259 | 0.9838 | 29.2081 | 30.0166 |
RSL2011 [4] | 30.67 | 13.2990 | 0.1980 | 0.1170 | 0.8544 | 23.9750 | 25.0400 |
FC-FlowNet [5] | 18.00 | 7.7727 | 0.0673 | 0.0189 | 0.9690 | 28.6840 | 29.5294 |
LaBGen [6] | 10.83 | 5.5689 | 0.0327 | 0.0075 | 0.9807 | 29.2590 | 30.1356 |
LaBGen-P [7] | 19.83 | 7.3028 | 0.0803 | 0.0395 | 0.9760 | 28.2974 | 29.1409 |
RMR [8] | 30.33 | 13.2459 | 0.2547 | 0.1571 | 0.9115 | 25.1309 | 26.0738 |
SC-SOBS-C4 [9] | 10.00 | 6.0638 | 0.0355 | 0.0021 | 0.9837 | 29.2615 | 30.1014 |
MAGRPCA [10] | 5.00 | 3.9164 | 0.0184 | 0.0040 | 0.9861 | 31.3101 | 32.0265 |
TMFG [11] | 15.17 | 7.3530 | 0.0671 | 0.0274 | 0.9851 | 29.2432 | 30.1213 |
Bidirectional Analysis and Consensus Voting [12] | 17.33 | 7.0049 | 0.0429 | 0.0045 | 0.9558 | 27.6839 | 28.6442 |
Bidirectional Analysis [13] | 14.17 | 6.7502 | 0.0395 | 0.0012 | 0.9675 | 27.8260 | 28.7710 |
BE-AAPSA [14] | 3.00 | 3.8745 | 0.0148 | 0.0010 | 0.9844 | 32.5501 | 33.1853 |
MSCL [15] | 3.33 | 3.8214 | 0.0172 | 0.0022 | 0.9874 | 32.2773 | 32.9941 |
DECOLOR [16] | 14.83 | 5.5234 | 0.0352 | 0.0155 | 0.9524 | 27.8960 | 28.7663 |
3-Term Decomposition [17] | 24.33 | 7.6075 | 0.1108 | 0.0591 | 0.9520 | 27.7971 | 28.6593 |
BRTF [18] | 24.00 | 7.3847 | 0.0764 | 0.0287 | 0.9515 | 27.6387 | 28.5167 |
RFSA [19] | 26.00 | 7.5854 | 0.0913 | 0.0389 | 0.9510 | 27.5835 | 28.4562 |
RMAMR [20] | 5.00 | 3.9164 | 0.0184 | 0.0040 | 0.9861 | 31.3101 | 32.0265 |
SSGoDec [21] | 22.00 | 7.3409 | 0.0745 | 0.0276 | 0.9515 | 27.6654 | 28.5486 |
GRASTA [22] | 22.00 | 7.3212 | 0.0724 | 0.0269 | 0.9510 | 27.6568 | 28.5354 |
GOSUS [23] | 23.50 | 7.3589 | 0.0747 | 0.0276 | 0.9514 | 27.6554 | 28.5304 |
BEWiS [24] | 2.00 | 3.9652 | 0.0108 | 0.0006 | 0.9891 | 32.5325 | 33.2217 |
LaBGen-OF [25] | 3.17 | 4.2856 | 0.0114 | 0.0006 | 0.9891 | 32.0746 | 32.8312 |
NExBI [26] | 21.67 | 6.2698 | 0.0597 | 0.0172 | 0.9393 | 26.7234 | 27.6388 |
ABM [27] | 8.17 | 4.8410 | 0.0242 | 0.0023 | 0.9784 | 30.3236 | 31.0717 |
LaBGen-P-Semantic (CV+U) [28] | 25.33 | 8.2348 | 0.1011 | 0.0488 | 0.9477 | 27.7941 | 28.6867 |
LaBGen-P-Semantic (MP+U) [29] | 23.83 | 8.2884 | 0.1001 | 0.0429 | 0.9440 | 28.4847 | 29.3482 |
SPMD [30] | 9.33 | 6.0926 | 0.0283 | 0.0055 | 0.9824 | 30.3175 | 31.1195 |
FSBE [31] | 16.33 | 6.9832 | 0.0780 | 0.0352 | 0.9783 | 29.3262 | 30.1744 |
AAPSA [1] | 19.00 | 6.6297 | 0.0547 | 0.0129 | 0.9614 | 27.4929 | 28.3462 |
Results, for the very short category.
Click on method name for more details.
Method | Average ranking | Average AGE | Average pEPs | Average pCEPS | Average MSSSIM | Average PSNR | CQM |
---|---|---|---|---|---|---|---|
Temporal median filter [2] | 5.33 | 5.1336 | 0.0324 | 0.0120 | 0.9537 | 30.6255 | 31.3012 |
Photomontage [3] | 3.67 | 4.9770 | 0.0327 | 0.0030 | 0.9548 | 31.0117 | 31.6568 |
RSL2011 [4] | 26.83 | 9.0950 | 0.0877 | 0.0410 | 0.8859 | 24.2435 | 25.1426 |
FC-FlowNet [5] | 17.33 | 6.5094 | 0.0541 | 0.0211 | 0.9345 | 28.9447 | 29.6743 |
LaBGen [6] | 10.83 | 5.3093 | 0.0332 | 0.0136 | 0.9474 | 30.1754 | 30.8162 |
LaBGen-P [7] | 13.17 | 5.5653 | 0.0417 | 0.0199 | 0.9461 | 29.8264 | 30.4694 |
RMR [8] | 18.00 | 6.4059 | 0.0541 | 0.0137 | 0.9329 | 28.0882 | 28.8900 |
SC-SOBS-C4 [9] | 5.83 | 5.2953 | 0.0330 | 0.0044 | 0.9556 | 30.4997 | 31.1813 |
MAGRPCA [10] | 20.33 | 8.3363 | 0.0999 | 0.0778 | 0.9511 | 27.8815 | 28.6430 |
TMFG [11] | 5.50 | 5.1825 | 0.0321 | 0.0106 | 0.9520 | 30.6010 | 31.2242 |
Bidirectional Analysis and Consensus Voting [12] | 26.17 | 9.0271 | 0.0850 | 0.0366 | 0.8902 | 22.8906 | 23.8972 |
Bidirectional Analysis [13] | 19.50 | 6.3972 | 0.0480 | 0.0126 | 0.9279 | 27.0145 | 27.8472 |
BE-AAPSA [14] | 24.17 | 8.0857 | 0.0832 | 0.0429 | 0.8921 | 25.6458 | 26.5128 |
MSCL [15] | 10.17 | 5.7790 | 0.0387 | 0.0131 | 0.9363 | 31.2396 | 31.8320 |
DECOLOR [16] | 26.17 | 8.9984 | 0.1058 | 0.0809 | 0.9475 | 27.5064 | 28.2282 |
3-Term Decomposition [17] | 19.17 | 7.7930 | 0.1019 | 0.0780 | 0.9506 | 29.2653 | 29.9966 |
BRTF [18] | 24.67 | 8.7119 | 0.1039 | 0.0785 | 0.9477 | 27.5693 | 28.2903 |
RFSA [19] | 24.33 | 8.8522 | 0.1042 | 0.0769 | 0.9441 | 27.5926 | 28.3072 |
RMAMR [20] | 20.33 | 8.3363 | 0.0999 | 0.0778 | 0.9511 | 27.8815 | 28.6430 |
SSGoDec [21] | 20.50 | 8.2366 | 0.0989 | 0.0774 | 0.9510 | 27.8814 | 28.6231 |
GRASTA [22] | 20.17 | 8.1496 | 0.0995 | 0.0779 | 0.9509 | 28.0017 | 28.7774 |
GOSUS [23] | 20.33 | 7.9443 | 0.0998 | 0.0786 | 0.9506 | 28.5067 | 29.2419 |
BEWiS [24] | 10.67 | 5.1937 | 0.0345 | 0.0136 | 0.9488 | 29.8036 | 30.4858 |
LaBGen-OF [25] | 7.83 | 5.0338 | 0.0325 | 0.0135 | 0.9509 | 30.4959 | 31.1315 |
NExBI [26] | 14.17 | 5.7134 | 0.0427 | 0.0106 | 0.9424 | 28.7691 | 29.4964 |
ABM [27] | 22.50 | 7.7572 | 0.0664 | 0.0238 | 0.9101 | 26.2541 | 27.0108 |
LaBGen-P-Semantic (CV+U) [28] | 1.50 | 4.5450 | 0.0245 | 0.0056 | 0.9629 | 31.4073 | 32.0297 |
LaBGen-P-Semantic (MP+U) [29] | 2.83 | 4.7175 | 0.0273 | 0.0067 | 0.9612 | 31.0652 | 31.6927 |
SPMD [30] | 15.00 | 5.9017 | 0.0446 | 0.0177 | 0.9423 | 29.5449 | 30.2557 |
FSBE [31] | 10.33 | 5.4912 | 0.0347 | 0.0042 | 0.9477 | 29.5437 | 30.2593 |
AAPSA [1] | 27.67 | 9.2952 | 0.0860 | 0.0438 | 0.8870 | 22.7636 | 23.7275 |
Metrics :
- AGE: (Average Gray-level Error). Average of the gray-level absolute difference between GT and the computed background (CB) image.
- pEPs: (Percentage of Error Pixels). Percentage of EPs (number of pixels in CB whose value differs from the value of the corresponding pixel in GT by more than a threshold) with respect to the total number of pixels in the image.
- pCEPS: (Percentage of Clustered Error Pixels). Percentage of CEPs (number of pixels whose 4-connected neighbors are also error pixels) with respect to the total number of pixels in the image.
- MSSSIM: (MultiScale Structural Similarity Index). Estimate of the perceived visual distortion.
- PSNR: (Peak-Signal-to-Noise-Ratio) Amounts to 10log_10((L-1)^2/MSE) where L is the maximum number of grey levels and MSE is the Mean Squared Error between GT and CB images.
- CQM: (Color image Quality Measure). Based on a reversible transformation of the YUV color space and on the PSNR computed in the single YUV bands. It assumes values in db and the higher the CQM value, the better is the background estimate.
References :
- 1. M Chacon-Murguia, G Ramirez-Alonso and J Ramirez-Quintana "Evaluation of the Background Modeling Method Auto-Adaptive Parallel Neural Network Architecture in the SBMnet Dataset", Scene Background Modeling workshop (ICPR) 2016
- 2. Piccardi, Massimo. "Background subtraction techniques: a review." In Systems, man and cybernetics, 2004 IEEE international conference on, vol. 4, pp. 3099-3104. IEEE, 2004.
- 3. A. Agarwala, M. Dontcheva, M. Agrawala, S. Drucker, A. Colburn, B. Curless, D. Salesin, and M. Cohen, “Interactive digital photomontage,” ACM Trans. Graph., vol. 23, no. 3, pp. 294–302, Aug. 2004
- 4. V. Reddy, C. Sanderson, and B. C. Lovell, “A low-complexity algorithm for static background estimation from cluttered image sequences in surveillance contexts,” EURASIP J. Image Video Process., vol. 2011, pp. 1:14, Jan. 2011
- 5. I. Halfaoui, F. Bouzaraa and O. Urfalioglu. "CNN-Based Initial Background Estimation", Scene Background Modeling workshop (ICPR) 2016
- 6. B. Laugraud, S. Piérard, M. Van Droogenbroeck « LaBGen: A method based on motion detection for generating the background of a scene », Pattern Recognition Letters, Volume 96, Pages 12-21, 1 September 2017
- 7. B. Laugraud, S. Piérard, M. Van Droogenbroeck "LaBGen-P: A Pixel-Level Stationary Background Generation Method Based on LaBGen", Scene Background Modeling workshop (ICPR) 2016
- 8. D. Ortego, J. C. SanMiguel, J. M. Martínez, "Rejection based multipath reconstruction for background estimation in video sequences with stationary objects", Computer Vision and Image Understanding, vol. 147, pp. 23-37, 2016
- 9. L. Maddalena and A.Petrosino "Extracting a Background Image by a Multi-modal Scene Background Model", Scene Background Modeling workshop (ICPR) 2016
- 10. S Javed, A. Mahmmod, T. Bouwmans and S. Ki Jung. "Motion-Aware Graph Regularized RPCA for Background Modeling of Complex Scene", Scene Background Modeling workshop (ICPR) 2016
- 11. W. Liu, Y. Cai, M. Zhang, H. Li and H. Gu. "Scene Background Estimation Based on Temporal Median Filter with Gaussian Filtering", Scene Background Modeling workshop (ICPR) 2016
- 12. T. Minematsu, A. Shimada and R-I Taniguchi "Background Initialization based on Bidirectional Analysis and Consensus Voting", , Scene Background Modeling workshop (ICPR) 2016
- 13. T. Minematsu, A. Shimada and R-I Taniguchi "Background Initialization based on Bidirectional Analysis and Consensus Voting", , Scene Background Modeling workshop (ICPR) 2016
- 14. G. Ramirez-Alonsoa, Juan A.Ramirez-Quintana .Mario I.Chacon-Murguia "Temporal weighted learning model for background estimation with an automatic re-initialization stage and adaptive parameters update", in Pattern Recognition Letters, 2017 (http://www.sciencedirect.com/science/article/pii/S0167865517300120)
- 15. Sajid Javed, Arif Mahmood, Thierry Bouwmans, and Soon Ki Jung, "Background-Foreground Modeling Based on Spatiotemporal Sparse Subspace Clustering" accepted at IEEE Trans on Image Processing, 2017
- 16. X. Zhou, C. Yang, W. Yu, Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation, T-PAMI-2013
- 17. Omar Oreifej, Xin Li, Mubarak Shah, "Simultaneous Video Stabilization and Moving Object Detection in Turbulence", T-PAMI, 2012
- 18. Q. Zhou etal., Bayesian Robust Tensor Factorization for Incomplete Multiway Data, IEEE Transactions on NNLS, 2015
- 19. X. Guo et al., Robust Foreground Detection Using Smoothness and Arbitrariness Constraints, ECCV-2014
- 20. X. Ye, Foreground-Background Separation From Video Clips via Motion-Assisted Matrix Restoration, T-CSVT, 2015 => https://github.com/andrewssobral/lrslibrary
- 21. T. Zhaou et al., GoDec: Randomized Low-rank & Sparse Matrix Decomposition in Noisy Case,ICML2011
- 22. Jun He et al. Incremental Gradient on the Grassmannian for Online Foreground and Background Separation in Subsampled Video, CVPR 2012
- 23. J. Xu et al., GOSUS: Grassmannian Online Subspace Updates with Structured-sparsity, ICCV-2013
- 24. Massimo De Gregorio and Maurizio Giordano, "Background estimation by weightless neural networks” - submitted to Pattern Recognition Letters
- 25. B. Laugraud, M. Van Droogenbroeck « Is a Memoryless Motion Detection Truly Relevant for Background Generation with LaBGen? », Advanced Concepts for Intelligent Vision Systems (ACIVS), LNCS 10617, Pages 443-454, 2017
- 26. M.Jmal "Real-time Scene Background Initialization based on Spatio-Temporal Neighborhood Exploration" submitted to journal of multimedia tools and applications.
- 27. Danilo Avola, Marco Bernardi, Luigi Cinque, Gian Luca Foresti, Cristiano Massaroni "Adaptive bootstrapping management by keypoint clustering for background initialization", Pattern Recognition Letters Volume 100, 1 December 2017, Pages 110-116 (www.sciencedirect.com/science/article/pii/S0167865517303975)
- 28. B. Laugraud, S. Piérard, M. Van Droogenbroeck « LaBGen-P-Semantic: A First Step for Leveraging Semantic Segmentation in Background Generation », MDPI Journal of Imaging, Volume 4, Issue 7, 25 June 2018 (http://www.mdpi.com/2313-433X/4/7/86)
- 29. B. Laugraud, S. Piérard, M. Van Droogenbroeck « LaBGen-P-Semantic: A First Step for Leveraging Semantic Segmentation in Background Generation », MDPI Journal of Imaging, Volume 4, Issue 7, 25 June 2018 (http://www.mdpi.com/2313-433X/4/7/86)
- 30. Z. Xu, B. Min, R. Cheung "A Robust Background Initialization Algorithm with Superpixel Motion Detection". submitted to Signal Processing: Image Communication; arxiv.org/abs/1805.06737
- 31. Achraf Djerida Robust background generation based on an effective frames selection method and an efficient background estimation procedure (FSBE) Journal Signal Processing: Image Communication DOI 10.1016/j.image.2019.06.001