Contact name | Maurizio Giordano |
Contact email | maurizio.giordano@cnr.it |
Contact university/company | ICAR - Consiglio Nazionale delle Ricerche |
Method's name | BEWiS |
Reference | Massimo De Gregorio and Maurizio Giordano, "Background estimation by weightless neural networks” - submitted to Pattern Recognition Letters |
Processing time | 3 fps for a 360x240 video with OpenMP parallelized C++ code on a QuadCore i7 |
Code is available online | True |
Web page | https://github.com/giordamaug/BEWiS |
Parameters |
4-bit neuron (b=4), 256 color scaling in RGB space (n=256,m=RGB), unity reward&punish (p=1:1), saturation value = 50 (u=50), always train pixels (k=-1).
|
You can download the background estimation results of this method by clicking here.
Video |
AGE |
pEPs |
pCEPS |
MSSSIM |
PSNR |
CQM |
skating |
5.3344 |
0.0276 |
0.0074 |
0.9580 |
22.6638 |
24.3698 |
wetSnow |
3.4244 |
0.0214 |
0.0145 |
0.9731 |
30.3484 |
31.1961 |
I_SI_01 |
2.3405 |
0.0017 |
0.0002 |
0.9948 |
37.8852 |
38.2852 |
streetCornerAtNight |
2.7893 |
0.0008 |
0.0002 |
0.9833 |
36.5684 |
37.5805 |
Hybrid |
4.1145 |
0.0058 |
0.0000 |
0.9898 |
32.9509 |
33.4677 |
511 |
3.5316 |
0.0242 |
0.0004 |
0.9808 |
31.2115 |
33.0870 |
Blurred |
1.5186 |
0.0000 |
0.0000 |
0.9976 |
41.0599 |
41.2976 |
CamouflageFgObjects |
3.7060 |
0.0204 |
0.0125 |
0.9797 |
30.1674 |
30.8818 |
IntelligentRoom |
3.1865 |
0.0018 |
0.0000 |
0.9924 |
35.0876 |
35.4253 |
PETS2006 |
1.8269 |
0.0026 |
0.0017 |
0.9899 |
34.7080 |
35.4148 |
IPPR2 |
6.9032 |
0.0254 |
0.0122 |
0.9244 |
26.9198 |
27.5476 |
MPEG4_40 |
1.7021 |
0.0083 |
0.0006 |
0.9914 |
36.1269 |
37.1546 |
ComplexBackground |
6.4103 |
0.0318 |
0.0015 |
0.9854 |
28.8501 |
29.6253 |
Intersection |
2.5135 |
0.0022 |
0.0000 |
0.9860 |
36.6546 |
37.1458 |
fluidHighway |
8.4373 |
0.0427 |
0.0315 |
0.9505 |
27.2190 |
27.2005 |
highway |
7.3382 |
0.0419 |
0.0098 |
0.9552 |
27.3016 |
28.3772 |
Video |
AGE |
pEPs |
pCEPS |
MSSSIM |
PSNR |
CQM |
overpass |
6.4600 |
0.0755 |
0.0052 |
0.9097 |
26.6900 |
27.7637 |
advertisementBoard |
1.9999 |
0.0035 |
0.0017 |
0.9938 |
36.4428 |
37.0137 |
canoe |
14.6321 |
0.2497 |
0.0455 |
0.6651 |
20.5574 |
21.1235 |
fountain01 |
5.5050 |
0.0524 |
0.0102 |
0.9378 |
26.3198 |
27.5050 |
fountain02 |
5.1842 |
0.0240 |
0.0011 |
0.9608 |
30.4422 |
31.3007 |
fall |
24.2842 |
0.3494 |
0.1080 |
0.7189 |
15.9998 |
17.1041 |
Video |
AGE |
pEPs |
pCEPS |
MSSSIM |
PSNR |
CQM |
O_SM_04 |
5.9091 |
0.0391 |
0.0003 |
0.9667 |
29.2007 |
30.2477 |
boulevard |
10.3209 |
0.1344 |
0.0198 |
0.8891 |
21.3146 |
22.8651 |
I_SM_04 |
3.7473 |
0.0333 |
0.0007 |
0.9849 |
29.8591 |
30.8215 |
I_MC_02 |
15.9705 |
0.1999 |
0.0874 |
0.7147 |
18.4206 |
19.6247 |
badminton |
2.4827 |
0.0145 |
0.0114 |
0.9641 |
28.1868 |
29.3508 |
O_MC_02 |
11.6324 |
0.1536 |
0.0464 |
0.7943 |
21.4860 |
22.3386 |
traffic |
6.5829 |
0.0460 |
0.0221 |
0.9162 |
28.8186 |
29.5370 |
CMU |
4.5779 |
0.0250 |
0.0051 |
0.9870 |
29.7680 |
30.5310 |
sidewalk |
23.5169 |
0.2972 |
0.1689 |
0.4545 |
15.6125 |
17.4051 |
Video |
AGE |
pEPs |
pCEPS |
MSSSIM |
PSNR |
CQM |
Uturn |
2.8864 |
0.0078 |
0.0031 |
0.9829 |
31.9702 |
32.6505 |
CaVignal |
1.9820 |
0.0081 |
0.0036 |
0.9785 |
30.4862 |
31.5371 |
office |
7.8138 |
0.0361 |
0.0257 |
0.9553 |
24.7658 |
25.6503 |
sofa |
3.5433 |
0.0264 |
0.0174 |
0.9589 |
26.9413 |
27.9533 |
copyMachine |
3.1396 |
0.0061 |
0.0007 |
0.9848 |
34.5166 |
35.2668 |
tramstop |
4.2390 |
0.0227 |
0.0002 |
0.9913 |
31.5152 |
32.1432 |
UCF-traffic |
1.7550 |
0.0105 |
0.0058 |
0.9735 |
33.1355 |
35.4670 |
streetCorner |
9.7051 |
0.0854 |
0.0552 |
0.8675 |
20.7801 |
21.9184 |
AVSS2007 |
17.0903 |
0.1382 |
0.1128 |
0.7784 |
17.0107 |
18.0036 |
Teknomo |
6.7955 |
0.0474 |
0.0180 |
0.9506 |
26.1940 |
27.2137 |
I_CA_02 |
2.6586 |
0.0038 |
0.0001 |
0.9949 |
36.2705 |
36.8607 |
Candela_m1.10 |
3.1395 |
0.0130 |
0.0078 |
0.9698 |
29.0176 |
29.8035 |
I_MB_02 |
2.6911 |
0.0038 |
0.0012 |
0.9893 |
34.9514 |
35.5578 |
I_MB_01 |
2.8263 |
0.0270 |
0.0226 |
0.9848 |
28.6570 |
29.8839 |
busStation |
3.5297 |
0.0046 |
0.0013 |
0.9826 |
33.8541 |
34.4443 |
I_CA_01 |
2.6823 |
0.0025 |
0.0010 |
0.9925 |
36.3298 |
36.4902 |
Video |
AGE |
pEPs |
pCEPS |
MSSSIM |
PSNR |
CQM |
People&Foliage |
34.4507 |
0.4007 |
0.3424 |
0.6085 |
12.4626 |
13.4182 |
boulevardJam |
6.0621 |
0.0723 |
0.0400 |
0.8652 |
25.1959 |
26.3532 |
Crowded |
9.1140 |
0.0576 |
0.0409 |
0.9569 |
27.0095 |
28.3254 |
tramway |
12.3491 |
0.1341 |
0.0697 |
0.7819 |
19.3411 |
21.0565 |
groupCampus |
10.9947 |
0.1391 |
0.0836 |
0.8817 |
23.2991 |
23.9487 |
HumanBody2 |
4.4970 |
0.0269 |
0.0122 |
0.9803 |
28.1213 |
28.6049 |
Board |
18.3758 |
0.2780 |
0.2382 |
0.6050 |
18.4726 |
19.5750 |
Foliage |
11.7717 |
0.1740 |
0.0508 |
0.9208 |
23.7278 |
23.9815 |
UCF-fishes |
1.2660 |
0.0001 |
0.0000 |
0.9807 |
42.5471 |
44.0118 |
ICRA3 |
6.4711 |
0.0649 |
0.0510 |
0.8983 |
21.5737 |
22.5094 |
IndianTraffic3 |
2.0326 |
0.0017 |
0.0005 |
0.9918 |
38.5338 |
39.4770 |
Video |
AGE |
pEPs |
pCEPS |
MSSSIM |
PSNR |
CQM |
I_IL_01 |
4.9630 |
0.0037 |
0.0022 |
0.9932 |
32.2041 |
33.0205 |
I_IL_02 |
4.9075 |
0.0012 |
0.0000 |
0.9933 |
32.0051 |
32.8486 |
Dataset3Camera1 |
3.1535 |
0.0033 |
0.0006 |
0.9904 |
34.9628 |
35.6600 |
CameraParameter |
4.9567 |
0.0493 |
0.0306 |
0.9781 |
26.5173 |
27.2836 |
Dataset3Camera2 |
2.7060 |
0.0032 |
0.0000 |
0.9921 |
35.4059 |
36.0338 |
cubicle |
14.7422 |
0.1268 |
0.1001 |
0.9002 |
16.1609 |
17.4362 |
Video |
AGE |
pEPs |
pCEPS |
MSSSIM |
PSNR |
CQM |
PedAndStorrowDrive3 |
2.9771 |
0.0146 |
0.0008 |
0.9929 |
32.9840 |
33.8105 |
PedAndStorrowDrive |
3.3351 |
0.0087 |
0.0015 |
0.9928 |
31.1373 |
32.1729 |
BusStopMorning |
6.0792 |
0.0233 |
0.0007 |
0.9857 |
29.2522 |
29.9708 |
Dataset4Camera1 |
2.0318 |
0.0011 |
0.0000 |
0.9962 |
37.6945 |
37.8536 |
Terrace |
5.4027 |
0.0064 |
0.0000 |
0.9780 |
31.5947 |
32.3007 |
Video |
AGE |
pEPs |
pCEPS |
MSSSIM |
PSNR |
CQM |
Toscana |
10.1748 |
0.1119 |
0.0804 |
0.8566 |
20.6871 |
21.6768 |
CUHK_Square |
5.1866 |
0.0384 |
0.0015 |
0.9628 |
29.3726 |
29.8880 |
pedestrians |
1.8056 |
0.0004 |
0.0000 |
0.9949 |
39.3524 |
39.7823 |
NoisyNight |
4.9072 |
0.0170 |
0.0010 |
0.9353 |
30.9954 |
31.9197 |
peopleInShade |
6.6691 |
0.0564 |
0.0330 |
0.9392 |
24.9800 |
25.9735 |
DynamicBackground |
7.4114 |
0.0553 |
0.0007 |
0.9615 |
27.3600 |
28.0085 |
snowFall |
2.6287 |
0.0012 |
0.0001 |
0.9574 |
37.0738 |
37.4932 |
TwoLeaveShop1cor |
4.3521 |
0.0240 |
0.0135 |
0.9415 |
26.4613 |
27.1666 |
MIT |
4.4850 |
0.0288 |
0.0020 |
0.9753 |
29.8452 |
30.9793 |
TownCentre |
4.3162 |
0.0121 |
0.0040 |
0.9633 |
31.9081 |
31.9698 |